skip to main content


Search for: All records

Creators/Authors contains: "Kashikawa, Nobunari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep HST observations1,2. The current highest redshift quasar host detected3, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars4,5,6 from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)7 mitigate the challenge of detecting their underlying, previously-undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with JWST. Using NIRCam imaging at 3.6μm and 1.5μm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M⊙, respectively), compact, and disk-like. NIRSpec medium-resolution spectroscopy shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M⊙, respectively). Their location in the black hole mass - stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  2. Abstract

    We present the Swimmy (Subaru WIde-field Machine-learning anoMalY) survey program, a deep-learning-based search for unique sources using multicolored (grizy) imaging data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). This program aims to detect unexpected, novel, and rare populations and phenomena, by utilizing the deep imaging data acquired from the wide-field coverage of the HSC-SSP. This article, as the first paper in the Swimmy series, describes an anomaly detection technique to select unique populations as “outliers” from the data-set. The model was tested with known extreme emission-line galaxies (XELGs) and quasars, which consequently confirmed that the proposed method successfully selected $\sim\!\! 60\%$–$70\%$ of the quasars and $60\%$ of the XELGs without labeled training data. In reference to the spectral information of local galaxies at z = 0.05–0.2 obtained from the Sloan Digital Sky Survey, we investigated the physical properties of the selected anomalies and compared them based on the significance of their outlier values. The results revealed that XELGs constitute notable fractions of the most anomalous galaxies, and certain galaxies manifest unique morphological features. In summary, deep anomaly detection is an effective tool that can search rare objects, and, ultimately, unknown unknowns with large data-sets. Further development of the proposed model and selection process can promote the practical applications required to achieve specific scientific goals.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Sample return from the near-Earth asteroid known as 25143 Itokawa was conducted as part of the Hayabusa mission, with a large number of scientific findings being derived from the returned samples. Following the Hayabusa mission, Hayabusa2 was planned, targeting sample return from a primitive asteroid. The primary target body of Hayabusa2 was asteroid 162173 Ryugu; however, it was also necessary to gather physical information for backup target selection. Therefore, we examined five asteroids spectroscopically, 43 asteroids spectrophotometrically, and 41 asteroids through periodic analysis. Hence, the physical properties of 74 near-Earth asteroids were obtained, which helped the Hayabusa2 backup target search, and also furthered understanding of the physical properties of individual asteroids and their origins.

     
    more » « less
  6. Abstract

    We present new ALMA observations and physical properties of a Lyman break galaxy at z = 7.15. Our target, B14-65666, has a bright ultra-violet (UV) absolute magnitude, MUV ≈ −22.4, and has been spectroscopically identified in Lyα with a small rest-frame equivalent width of ≈4 Å. A previous Hubble Space TElescope (HST) image has shown that the target is composed of two spatially separated clumps in the rest-frame UV. With ALMA, we have newly detected spatially resolved [O iii] 88 μm, [C ii] 158 μm, and their underlying dust continuum emission. In the whole system of B14-65666, the [O iii] and [C ii] lines have consistent redshifts of 7.1520 ± 0.0003, and the [O iii] luminosity, (34.4 ± 4.1) × 108 L⊙, is about three times higher than the [C ii] luminosity, (11.0 ± 1.4) × 108 L⊙. With our two continuum flux densities, the dust temperature is constrained to be Td ≈ 50–60 K under the assumption of a dust emissivity index of βd = 2.0–1.5, leading to a large total infrared luminosity of LTIR ≈ 1 × 1012 L⊙. Owing to our high spatial resolution data, we show that the [O iii] and [C ii] emission can be spatially decomposed into two clumps associated with the two rest-frame UV clumps whose spectra are kinematically separated by ≈200 km s−1. We also find these two clumps have comparable UV, infrared, [O iii], and [C ii] luminosities. Based on these results, we argue that B14-65666 is a starburst galaxy induced by a major merger. The merger interpretation is also supported by the large specific star formation rate (defined as the star formation rate per unit stellar mass), sSFR $= 260^{+119}_{-57}\:$Gyr−1, inferred from our SED fitting. Probably, a strong UV radiation field caused by intense star formation contributes to its high dust temperature and the [O iii]-to-[C ii] luminosity ratio.

     
    more » « less
  7. Abstract

    We present ALMA [C ii] line and far-infrared (FIR) continuum observations of three $z \gt 6$ low-luminosity quasars ($M_{\rm 1450} \gt -25$ mag) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [C ii] line was detected in all three targets with luminosities of $(2.4\mbox{--}9.5) \times 10^8\, L_{\odot }$, about one order of magnitude smaller than optically luminous ($M_{\rm 1450} \lesssim -25$ mag) quasars. The FIR continuum luminosities range from $\lt 9 \times 10^{10}\, L_{\odot }$ (3 $\sigma$ limit) to ${\sim } 2 \times 10^{12}\, L_{\odot }$, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [C ii]/ FIR luminosity ratios similar to local star-forming galaxies. Using the [C ii]-based dynamical mass ($M_{\rm dyn}$) as a surrogate for bulge stellar mass ($M_{\rm\, bulge}$), we find that a significant fraction of low-luminosity quasars are located on or even below the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes and their hosts in a less biased way. Almost all of the quasars presented in this work are growing their black hole mass at a much higher pace at $z \sim 6$ than the parallel growth model, in which supermassive black holes and their hosts grow simultaneously to match the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation at all redshifts. As the low-luminosity quasars appear to realize the local co-evolutionary relation even at $z \sim 6$, they should have experienced vigorous starbursts prior to the currently observed quasar phase to catch up with the relation.

     
    more » « less